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＜論　説＞

A Simple Survey of Dynamic Programming and Applications

FUKUDA Shin

Abstract

In this paper, I introduce the development of dynamic programming. To solve dynamic 

programming numerically, function approximation and numerical integration are 

required. The purpose of this paper is to provide a brief survey of them. Furthermore, as a 

training application of dynamic programming, we introduce a labor market search model 

and develop a series of dynamic programming operations.

1. Introduction

In economic analysis, more advanced analysis is required due to developments in 

computers. This is also infl uenced by the emergence of free software such as Python and 

Julia that can implement advanced calculations.

In this paper, we review the theoretical development of dynamic programming (DP), 

numerical analysis, and simulation methods. Since Bellman (1957), DP has become 

a powerful tool for solving dynamic models. As just said, there are many cases in 

dynamic economic analysis that show numerical simulations. There are many different 

mathematical techniques to make this possible, but advances in analysis software are 

helping to drive down the cost of doing so. In this paper I present a representative model 
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approximation and numerical integration.

A useful exercise for these sequences of deployment is the job search model. In 

particular, it makes a lot of sense as an implementation training for DP on discrete choice 

problems. In this regard, Thomas Sargent and John Stachurski provide one programming 

package "QuantEcon" , which makes it even easier to work with.

2. DP and Simulations

DP, known as backward induction, is widely used in economics and has been an 

important tool forsolving optimization problems. It is a recursive method for solving 

sequential decision problems and applies to both discrete and continuous time models. 

According to Bellman (1957), the DP problem has two important variables (vectors): the 

state variables and the activity variables (decision variables or control variables). Optimal 

decision making is a function that depends on time as well as state variables called policy 

functions. Bellman (1957) states that an optimal policy constitutes an optimal policy 

with respect to the state in which the remaining decisions arise from the initial decision, 

whatever the initial state and initial decision. The equivalence between the original 

sequential decision problem and its corresponding DP problem is called the optimality 

principle.

2.1 Defi nition of decision-making process and Bellman's equation

   Now consider the discrete time problem. In this case, the Markov decision making 

process (MDP) consists of a time index t ∈ {0, 1, … , T} (T ≤ ∞), a state space S, an 

activity space A, a constraint set  {A(S) ⊆ A}, a transition probability p(ds′|s, a), a 

discount factor 𝛽 ∈ (0, 1), and an additively separable reward function1

(1)
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The optimization problem is to choose the optimal rule 𝜋 = (𝜋0, … , 𝜋T) for decision 

making to solve the following problem:

(2)

where, p0 is the probability distribution from which the initial state s0 is drawn. 

The problem is that solving eq. (2) requires T + 1 multivariate integrations, which 

is impossible to implement. Then, using DP, I can greatly simplify this intractable 

optimization problem.

First, I consider the case of a finite time horizon (T < ∞). DP is a simple backward 

induction. At the fi nal time T, 

are defi ned. By induction,

are defi ned for t = 0, 1, … , T - 1. I can confi rm that the value function v0(s0) at time t 

= 0 represents the expected discounted value of the maximized reward at all future time 

points. I have

(3)

because DP recursively generates the optimal decision rule 𝜋 = (𝜋0, … , 𝜋T).

Next, I consider the case of an infinite time horizon with no end point (T = ∞).  

However, if the reward function r is bounded and the discount factor is 𝛽 ∈ (0, 1), R∞(s, d) 

can be approximated to the reward function RT(s, d) of the fi nite time horizon problem 
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with T large enough. This is the basic concept for numerically solving the infi nite time 

horizon DP.

Stationarity is required for MDP for infinite period. This means that the transition 

probabilities and reward functions are the same for all t. This defi nes v and 𝜋 of infi nite 

duration as 

(4)

(5)

by omitting the subscript t. The functional eq. (4) is known as the Bellman equation and 

the value function v is the fi xed point of this functional equation.

To check that the solution v of the Bellman equation exists and is unique, suppose (1) 

the S and A are complete metric spaces2, and (2) r(s, a) is continuous in (s, a). (3)  s → 

A(s) is of continuous correspondence. Let B(S) be the Banach space of all measurable 

and bounded functions f : S →   under the sup norm ||f|| = sups∈S|f(s)| 3. Defi ne the 

Bellman operator 𝛤 : B(S) → B(S) by

(6)

Therefore, the Bellman equation can be rewritten as  

(7)

In other words, v is a fixed point of the mapping 𝛤. Denardo (1967) shows that the 

Bellman operator has a particularly good property of contraction mapping. This implies 

that for w and v in a compact state space B,  

(8)

The contraction mapping establishes the existence and uniqueness of the solution v to the 

Bellman equation.

The uniqueness of fi xed points is a direct consequence of the contraction property (8). 

If w and v are fi xed points for 𝛤, eq. (8) implies that 
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Since 𝛽 ∈ (0, 1), the only possible solution to this equation is ||v - w|| = 0. The existence 

of fixed points is due to the completeness of Banach spaces. Starting from some 

initial element (say 0) in Banach space, the contraction (8) implies that the following 

approximation sequence forms the Cauchy sequence in Banach space.

Since the Banach space B is complete, the Cauchy sequence converges to the point v ∈ B. 

Thus existence is established by showing that v is a fi xed point of 𝛤.

Using the contractility of 𝛤, it is known that for an infinite horizon problem, the 

following holds for some bounded and continuous function v0:

where v is a fi xed point of 𝛤 and 𝛤n denotes n iterations of the Bellman operator 𝛤.

I then establish that the stationary decision-making rule defined by v in eq (4) is 

optimal. The Blackwell theorem is a necessary theorem for this purpose. This theorem 

constructs that the stationary Markovian infinite policy given by 𝜋 in eqs. (4) and 

(5) produces the optimal decision making rule for eq. (2), the infinite MDP problem. 

This theorem is a sufficient condition for further discussion of fixed points. Here, the 

Blackwell theorem requires that 𝛤 be (1) monotonic4 and (2) discounted5.

Finally, I see approximate fixed point error bounds for approximating the Bellman 

operator. In problems S contains infinite states, the value function v is usually 

approximated simply by being an element of an infi nite-dimensional Banach space B(S). 

In general, to approximate the fi xed point v = 𝛤(v) of B(S), the fi xed point vN = 𝛤N(vN) 

of the approximate Bellman operator 𝛤N : BN → BN is computed. where BN is a fi nite-
dimensional subset of B(S). The following lemma provides the error bounds necessary 

to prove the convergence of such approximations.

Consider {𝛤N } is a contraction map on the N-indexed Banach space B that is point 
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convergent. For ∀w ∈ B, we can obtain:

(9)

I can see  limN → ∞||vN - v|| = 0 since the approximate fi xed point vN = 𝛤N(vN) satisfi es 

the error bound6.

(10)

The value function iteration continues up to ||vN - v|| < 𝜀 for 𝜀 > 0.

2.2 Approximation method

What is important in measuring the sequence problem is approximating the function. 

Representative methods include Taylor expansion, perturbation method, and interpolation 

method. Here we focus on the interpolation method.

Now, consider a continuous function v : [a, b] →  . The purpose of interpolation is to 

approximate v by v̂(x) = 𝛴cj𝜙j(x), where j = 0, … , n is called the degree of interpolation, 𝜙j(x) is the basis function, and cj is the basis coeffi cient. The fi rst step in implementing 

the interpolation method is to select an appropriate basic function. Methods for doing 

this include the spectral method and the fi nite element method. The spectral method uses 

basis functions 𝜙j(x) that are globally non-zero, and the fi nite element method uses basis 

functions that are non-zero only in subregions of the approximation region [a, b]. Typical 

spectral methods include ordinary polynomial approximation and Chebyshev polynomial 

approximation. On the other hand, typical finite element methods include piecewise 

linear interpolation, cubic-splines, and B-splines.

The second step is to determine the basis coeffi cient cj. A typical way to solve for j = 

1, … , n coeffi cients is to fi nd a polynomial such that v̂(xi) = vi for i given a data pair (xi, 

vi) (where i = 1, … , m). In the simplest univariate case, the function v̂(x) is a polynomial 

of degree m - 1. That is, I fi nd the polynomial coeffi cient ci such that v̂(x) = 𝛴cixi (i = 0, 

… , m - 1). Now, defi ning c = (c0, c1, … , cm-1)′, v = (v1, … , vm)′, and 
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(11)

these coeffi cients are theoretically calculated by Ac = v. Also, xj is a general family of 

basis functions called monomial basis functions.

The problem here is how to fi nd the n-th order polynomial approximation when n < m, 

and this problem can arise in dealing with multivariate problems. In this case, I can use 

the least-squares method solving the following problem.

(12)

Then, the solution to this minimization problem is c = ( ′ )-1 ′v, which is equivalent 

to interpolation if n = m - 1 and 𝛷 are nonsingular, where

(1) Orthogonal polynomial

In the polynomial approximation above, I have to solve equation (12). However, using 

matrix (11) can cause problems because the monomial basis functions are not orthogonal 

to each other 7. 

Therefore, the basis functions and approximate nodes are selected so that the matrix 

 is orthogonal. By making such a choice, I can solve equation (12) because ′  is a 

diagonal matrix. This is the concept of orthogonal polynomials.

First, defi ne 

(13)

as the weighted inner product. The weighting function w(x) on the interval [a, b] 
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always has a positive fi nite integer on the interval. Now, if  < f, g >= 0 , the functions 

f and g are orthogonal to the weighting function w(x). Additionaly, if < 𝜙i, 𝜙j >= 0 for 

some i ≠ j, then the family of polynomials {𝜙j(x)} are mutually orthogonal polynomials.

Well-known orthogonal polynomials include Legendre polynomials, Chebyshev 

polynomials, Laguerre polynomials, and Hermite polynomials. Legendre polynomials 

has weighted functions w(x) = 1 on [-1, 1], Chebyshev polynomials w(x) = (1 - x2)-1/2 on 

[-1, 1], Laguerre polynomials w(x) = e-x on [0, ∞), and the Hermite polynomial  w(x) = 

e-x2 on (-∞, ∞). Here we briefl y introduce Chebyshev polynomials8.

The Chebyshev polynomial originated from verifying whether the n-fold angle of the 

cosine function exists9. In conclusion, cos n𝜃 is generally expressed as an n-th order 

polynomial of cos 𝜃. Suppose Tj(x) = cos j𝜃. When x ∈ [-1, 1], this Tj(x) can be written 

as Tj(x) = cos(j cos-1x) 10. If we recursively defi ne the j-order polynomial like 

we would understand that the following recurrence formula is satisfi ed.

In Figure 1 I depict the Chebyshev polynomials T1 through T4 on [-1, 1].

Furthermore, Tj(x) satisfi es the following relation.

The Chebyshev series with Tj(x) as the basis function is denoted by11:
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It is known that the Chebyshev polynomial Tj(x) has the following mathematical 

properties. They are that Tj(x) = 0 on [-1, 1] has n solutions such that:

Additionally, there is a relationship of T′n(x) = uUn(x) between Chebyshev 

polynomials of the fi rst kind and the second kind, and the solutions (extreme values) with 

this being 0 are all of x = cos k𝜋 / n (n = 0, 1, … , n). The y-coordinate given x is Tn( ⋅ ) 
= cos k𝜋 = (-1)k and is -1 for odd k and +1 for even k. Combining this with the previous 

solution, I can decipt a graph between +1 and -1 as shown in Fig.1.

Finally, I have the Chebyshev interpolation as follow:

(14)

Therefore, the (n - 1)-th order interpolation polynomial for the n-th order Chebyshev 

interpolation point (x1, … , xn ) is called a Chebyshev interpolation polynomial. It is 

known that the interpolation accuracy increases as the number of interpolation points 

increases. For comparison purposes, Fig.2 depicts the general Lagrangian interpolation 

and the Chebyshev interpolation with n = 15.

Fig.1. Chebyshev polynomial Fig.2. Interpolation compared

-1 10

-1

1
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(2) Spline interpolation

Another useful interpolation method is spline interpolation12. Here is a brief 

introduction to the commonly used cubic splines. In Lagrangian interpolation, as 

the number of nodes increases, the function oscillates and the interpolation accuracy 

deteriorates (see Fig.2). Also, the spline method has the advantage of being easier to use 

than the Chebyshev interpolation. Spline interpolation is a method of dividing a region 

to be interpolated into data intervals [xj, xj+1] and approximating them with a low-order 

polynomial using neighbore values. Of course, since I use an approximation function on 

the interval, there can be the problem of discontinuities in the derivative at the boundary 

if we do not properly approximate it.

In the cubic spline interpolation, the polynomial Sj(x) is given by: 

(15)

It is important to obtain this coeffi cient in determining the spline interpolation function. 

The problem here is that for j, for example, there are 4 unknown coeffi cients, but only 2 

equations. Therefore, it is necessary to set up suffi cient constraint equations to calculate 

the unknowns according to the constraint conditions13. In the general case, there are 4n 

unknowns. Setting the constraints according to footnote.13, the smoothing constraints are 

Sj(xj) = yj , Sj(xj+1) = yj+1 , Sj′ (xj) = Sj′+1(xj), and Sj″ (xj) = Sj″+1(xj), and the endpoint 

constraints are S0″ (x0) = 0 and Sn″-1(xn) = 0. This number is 2n + 2(n - 1) + 2 = 4n, which 

is equal to the number of unknowns. By 

doing so, I can solve for the unknowns 

and perform the interpolation. Fig.3 

depicts a cubic spline and a simple linear 

interpolation for f(x) = sin(x) over the 

interval [0, 8].

Fig.3. Linear and cubic spline interpolation
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2.3 Numerical integration

In order to analytically solve DP under uncertainty and perform numerical simulations, 

it is necessary to derive the expectations of the model. It is related to how to handle the 

integral when calculating the expected value. Here, I briefl y introduce how to compute 

the integral numerically14.

One of the most well-known simulation methods is the Monte Carlo method. By the 

central limit theorem, the numerical error of the integral computed by the Monte Carlo 

method follows a normal distribution, which means that the numerical error generated by 

the Monte Carlo method is not bounded. Additionally, the optimization problem requires 

the evaluation of a large number of objective functions, and a wrong evaluation at some 

point makes the previous iterations meaningless. Therefore, it is necessary to use a 

numerical integration method with bounded numerical errors.

Numerical integration has several calculation methods depending on the probability 

distribution of random variables. Here, we briefl y introduce the Gaussian quadrature method 

when the random variables follow the normal distribution and the uniform distribution. The 

basic concept of quadrature is to approximate an integral by a sum as follows:

where xi are the quadrature nodes and wi is the quadrature weights. Finally, I consider 

the problem of fi nding xi and wi and approximating the defi nite integral by a weighted 

sum of the values f(xi). Here, I introduce the Gauss-Legendre formula and the Gauss-
Hermitian formula.

The Gauss-Legendre formula gives good computational results when the random 

variables follow a uniform distribution. First, consider the weights wi. When xi (i = 1, … , n) 

is given on [a, b], the weights are written as:

(16)

Usually, we would expand the problem on [-1, 1]15. Also, if x can be chosen 
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appropriately, approximations up to order 2n - 1 can be performed accurately.

Now, let x1, … , xn be the zero point of the n-th order Legendre polynomial Pn(x), and 

calculate the weight from the Eq. (16)16. Then the following holds for any polynomial 

f(x) up to degree 2n - 1.

(17)

This indicates that the integral value of the function f(x) in [-1, 1] can be calculated by 

summing n values obtained by multiplying the function value at the quadrature nodes xi 

by the weight wi corresponding to the function value.

In fact, the weights and quadrature nodes for n have already been computed, e.g. xi = 0 

and wi = 2 for n = 1, xi = ± 0.577 and wi = 1 for n = 2, and, xi = 0, ± 0.538, ± 0.906 and 

wi = 0.568, 0.478, 0.236 for n = 5 17.

Finally, we extend the state restricted to the interval [-1, 1] to the general interval 

[a, b]. This can be done by using the permutation integral. This leads to the following 

relationship.

Next, consider the Gauss-Hermitian formula. This is a useful numerical integration 

method when the random variable follows N (𝜇, 𝜎2). Just as in the Gauss-Legendre 

formula described above, the nodes are based on the zeros of the Hermite polynomials in 

this formula, just as the nodes are based on the zeros of the Legendre polynomials. In this 

formula, it follows that if, for example, for a random variable  with distribution N(𝜇, 𝜎2), 

one computes f( ), it suffi ces to compute:

Note that the second equation contains a weight function e-x2 . So you can also understand 



91A Simple Survey of Dynamic Programming and Applications（   ）311

that the weight function of the Gauss-Legendre formula is 1. See Stroud and Secrest (1966) 

for nodes and weights depending on the size of n.

3. Basics of Job Search Theory

  Economic analysis of the labor market continues to develop as an important fi eld. 

Among them, McCall (1970), which develops the most primitive model, considers three 

factors that affect the decision-making problem of the unemployed (job seekers): wage 

movements, discount factors, and unemployment benefi ts. In fact, extended models of 

McCall (1970) provide many exercises for dealing with DP. Therefore, such models are 

excellent tools for understanding dynamic programming and learning how to perform 

simulation analysis.

The basic job search model assumes that people are faced with discrete choices of 

accepting or rejecting job contract proposals. According to McCall (1970), in each period 

the unemployed draws one wage offer w from a cumulative distribution function F(w) 

= Pr{w ≤ W} such that F(0) = 0 and F(B) = 1 for a finite B. In other words, wages 

are non-negative random variables. Here, we briefly review the relationship between 

non-negative random variables and uncertainty, and introduce the underlying model of 

McCall (1970).

3.1 Uncertainty

Rothschild and Stiglitz (1970) expands the defi nition of mean-preserving spread (MPS) 

into a dynamic model. MPS defi nes the concept of risk expansion using second-order 

stochastic dominance (SOSD)18.

Before defining MPS, let us first consider a non-negative random variable W. The 

expected value of a non-negative random variable W with cumulative distribution 

function F(w) presented here is given by19:
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(18)

where F(0) = 0 and F(B) = 1 are used.

   Next, we consider fi rst-order stochastic dominance (FOSD) and SOSD, and examine 

the concept of MPS defi ned by Rothschild and Stiglitz (1970)20. Now suppose a general 

utility function such as u′(w) > 0 and u″(w) < 0. Let z1 and z2 be random variables and 

their density functions denotes f1(w) and f2(w). Comparing the expected values under 

these conditions yields

 

When this is equal to zero, it is said to be a homogeneous mean condition. In this equation, 

F1 is said to have FOSD with respect to F2 when F2(w) > F1(w) for all w ∈ (0, B). 

Now, it is known that it can be written as follows:

This is the integral of the cumulative distribution function, so its value at any point 

w is the area under the F(w) curve for w going from 0 to w. Also, by the fundamental 

theorem of the calculus, F(w) = F(2)′(w) for all w. The function F(2) is called as super-
cumulative distribution function. Expanding in the same way as FOSD, between two 

different distributions,

holds. This is positive only when F1
(2) < F2

(2) for a utility function of general u″ < 0 . 

Therefore, I can say that the distribution F1 has SOSD to F2 when F1
(2)(w) < F2

(2)(w) for 

all w ∈ (0, B) and F1
(2)(B) = F2

(2)(B).

As Nishimura and Ozaki (2014) points out, if increased uncertainty in the labor market 

means increased risk to the wage distribution facing the unemployed (according to MSP), 

it will increase the reservation wages of the unemployed.
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3.2 McCall model overview

The simple McCall's model does not assume recall. Let yt be your income in period t. 

If you are unemployed, you will receive unemployment benefi ts c (i.e., yt = c), and if you 

choose to work, you will receive wage income w (i.e., yt = w). Unemployed workers living 

indefinitely strategize to maximize .  In this model, workers face a trade-off 

between (1) waiting longer for an offer and (2) accepting t=0 an offer earlier. The cost of (1) 

is due to the existence of the discount factor, and the cost of (2) arises from the uncertainty 

of future offers. The value function v(w) is the expected utility of a decision maker who 

decides whether to accept or reject an offer w, and satisfi es the following Bellman equation.

(19)

where the first term of the maximum operator is the future income from accepting 

the current offer w21. The second term is obtained through the activity of receiving 

unemployment benefi ts c in the current period when the offer was rejected and extracting 

the new wage w′ from the distribution F of the next period.

   Let us graph Eq.(19) using a simple numerical example. Here, we assume wages 

that follow a beta-binomial distribution with 100 trials and shape parameters 𝛼 and 𝛽 

of 100 and 50, respectively (see Fig. 4). Assuming wages that follow this distribution, 

unemployment benefi ts are set at c = 30, the discount factor at 𝛽 = 0.99. The result of 

calculating Eq.(19) based on this parameter is shown in Fig. 5.

reject accept

Fig.4: wage distribution Fig.5: Relation between function (19) and w
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The solution to function (19) is defi ned as follows:

(20)

Using this equation, I can transform the functional Eq.(19) of the value function v(w) 

into the ordering equation of the reservation wage w. Using the fi rst equation in Eq.(20), 

I can defi ne the difference between the reservation wage and unemployment benefi ts as 

follows22:

(21)

This formula is used to specify the reservation wage w.

A brief consideration of Eq.(21) is given below. The left hand side of this equation is 

the cost of rejecting the wage offer w in order to continue the search. On the other hand, 

the right hand side is the expected discount benefi t of rejecting w in order to continue 

searching. Eq.(21) therefore suggests that the reservation wage w be set so that the cost 

of another search equals the benefi t.

Next, I show how the reservation wage is determined. Expanding Eq.(21), I can 

obtain23: 

(22)

Note that we defi ne:

This function has the properties g(0) = 0, g(w) ≥ 0, 1 ≥ g′(w) = F(w > 0 , and g″(w) = 

F″(w) > 0 for w > 0.

Here, let 

for some distribution function F(w, z). Assuming the MPS above, we have the relation
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between these distribution functions, so I have:

Finally, to derive the reservation wage w, I need to solve 

(23)

This formula is depicted in Fig. 6.

Using the default parameters and wage distribution, let us calculate the fixed point 

equivalent of the reservation wage. Python and Julia contain packages that can compute this 

by iterative methods. Here, I ran 500 iterations, resulting in a reservation wage of 51.428.

Looking at Fig. 6, there are several implications involved. As simulated in Fig. 7, the 

reservation wage increases as the discount factor increases. Similarly, an increase in 

unemployment benefits will also increase the reservation wage. Moreover, as is clear 

from the right panel of Fig. 6, when risk z expands in a mean preserving, it also raises the 

reservation wage. This is because, in addition to increasing the probability of good wage 

offers, workers can reject bad offers. This result was also revealed by Nishimura and 

Ozaki (2014).

Finally, let us clarify other implications derived from the underlying model of McCall 

(1970) from simulations. They are the effects of discount factors and unemployment 

Fig. 6: Relationship between determination of w and uncertainty

increase in 

increase in 
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benefits on reservation wages and the effect of unemployment benefits on average 

duration of unemployment. Their simulation results are depicted in Fig. 7 and Fig. 8. In 

particular, Fig. 8 is derived by simulation based on optimal stopping theory.

These represent the expected results. Looking at Figure 8, it is clear that increasing 

unemployment benefits lengthens the duration of unemployment. In addition, based 

on this model, it can be understood that when the amount of unemployment benefits 

increases, there is a high possibility that even a small increase in benefi ts will signifi cantly 

extend the duration of unemployment.

4. Separations

So far, we have assumed that once a worker gets a job, he or she stays in that job 

permanently. However, this is unrealistic. Therefore, here we consider the M model that 

takes job separation into account.

Now suppose that workers face a separation rate 𝛼 ∈ (0, 1) in each period. For 

simplicity, this separation rate is assumed to be independent of tenure t. A worker who is 

currently unemployed draws a wage offer w from a time-varying but known probability 

distribution F.

Let v̂(w) be the expected discounted present value of the income of the unemployed 

Fig. 7: Effect of c and 𝛽 on w Fig. 8: c and the average duration of unemployment
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who receives an offer w. If an unemployed person accepts a wage offer, the expected 

discounted present value of his or her income is as follows:

Here, a worker who accepts a wage offer w receives w in the current period. 

Furthermore, since the probability of staying in the job in the next period is 1 - 𝛼, the 

discounted present value of income 𝛽v̂(w) is added with its probability. Workers, on the 

other hand, leave their jobs with probability 𝛼, receive unemployment benefi ts, and wait 

for new offers.

The value function is characterized as follows.

(24)

Reservation wages, taking into account separation, are obtained by solving:

(25)

Note that this Eq is similar to the reservation wage in Eq.(20), but the value function is 

different. In general, since v̂(w) with the separation rate is smaller than v(w) without it, 

the reservation wage taking into account the separation is lower.

Using the derivation process of Eq.(21), we can obtain24:

(26)

The left-hand side of this equation is the cost of choosing to continue searching, and the 

right-hand side is the expected discounted benefi t obtained therefrom. Using equation (26), 

we can analyze the effects of changing the unemployment benefi t c, the condition that F 

is in MPS, and changing the unemployment rate 𝛼. Here, these simulations are performed 

based on the following utility functions.
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Additionally, suppose that an unemployed worker accepts a new wage offer with 

probability 𝛾. If the worker accepts the offer, wages are drawn from the wage distribution 

F as before. Finally, the overall lifetime value of currently unemployed workers is:

In other words, the proportion 1 - 𝛾 that does not accept new wage offers will continue to 

be unemployed again. On the other hand, the rate 𝛾 of accepting a new offer estimates the 

lifetime value w′.

Here, we set 𝛽 = 0.98, 𝛾 = 0.7, and 𝜎 = 2.0 to simulate. The wage distribution is the 

beta-binomial distribution, and the unemployment benefi t c = 30.0 assumed in the basic 

McCall model. Furthermore, the separation rate is assumed to be 𝛼 = 0.2. Examining 

Fig.9 and 10, it will be seen that the same results as the basic McCall model are obtained. 

In other words, higher unemployment benefits and discount factors lead to higher 

reservation wages, even after accounting for job separation and reemployment.

Next, let us confi rm the effect on reservation wages when the separation rate changes. 

First, from the model, I calculate the effect of changes in 𝛼 on the reservation wage w:

Fig.9: Unemployment benefi ts and reservation wages Fig.10: Discount factors and reservation wages
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Therefore, an increase in the turnover rate lowers not only the expected utility of 

unemployed workers but also that of employed workers. This means that the solid line 

in Fig. 11 shifts downward. Fig.12 depicts the results of a simulation of the relationship 

between the separation rate 𝛼 and the reservation wage w.

In Fig.11, when the separation rate 𝛼 rises, the solid line shifts downward and the 

reservation wage w declines. A simulation using default parameters is depicted in Fig.12, 

and it is clear that the reservation wage decreases as 𝛼 increases from 0.0 to 0.5.

5. Learning Wage Distribution

So far, we have assumed that there is only one wage distribution. Here, we consider 

the case where there are two candidates for the density function of the wage distribution. 

One is F (density function is f) and the other is G (density function is g). For simplicity, 

we assume that job seekers know about these two distributions. At the beginning of the 

period, job seekers choose the sequences of wage {Wt } to be either f or g. If 𝜋0 is the 

(initial) probability of choosing f, the choice problem at time t is 𝜋tf + (1 - 𝜋t)g. Job 

Fig.11: Separation rate and reservation wages Fig.12: Simulation result

rise of 
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seekers update this selection probability 𝜋t based on observed offers.

The selection probability 𝜋 is updated as follows:

 
(27)

Finally, the McCall model value function can be rewritten as:

(28)

where, 𝜋′ = q(w′, 𝜋′). It should be noted that the inference 𝜋 is a state variable because it 

infl uences job seekers' perceptions of future reward probabilities. 

Here, we consider the following three cases by giving different hypotheses about f and g.

1. Case of fl at perspective f = Bn(1, 1) and optimistic perspective g = Bn(3, 1.6).

2. Case of fl at perspective f = Bn(1, 1) and pessimistic perspective g = Bn(3, 7).

3. Case of pessimistic perspective f = Bn(3, 7) and optimistic perspective g = Bn(3, 1.6). 

These distribution functions are depicted in Fig.13.

A job seeker adjusts the selection probability 𝜋t according to the observed offer, and 

selects (the density function of) the wage distribution f and g.

Next, a simulation analysis is performed. The 𝜋 ∈ (0.01, 0.99) and w ∈ (0, 120) 

grids are set to 40, respectively. To solve this model, the Gauss-Legendre polynomials 

introduced in Section 2 are used for numerical integration. Furthermore, the 

approximation uses linear interpolation. The simulation results are depicted in Fig.14.

Fig.13: Wage distributions

(a) Case 1 (c) Case 3(b) Case 2
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Now consider cases 1 and 2. In case 1, the uniform distribution is less attractive, and in 

case 2, the uniform distribution is more attractive. Also, depending on the value function, 

a policy that accepts an offer whenever w exceeds w and rejects it whenever w falls 

below wb is reasonable. Therefore, wb is the reservation wage, and the boundary line 

between accept and reject in Fig.14 corresponds to that level.

In Case 1, the uniform distribution f is an unattractive wage distribution, so an increase 

in 𝜋 means that workers' perspective are less evaluated. As a result, the reservation wage 

will fall. In Case 2, the uniform distribution f is more attractive. Therefore, an increase 

in 𝜋 means that the future prospects of workers will be evaluated higher. As a result, the 

reservation wage increases. Case 3 shows a more rapid decline in the reservation wage as 

the perspective shifts from optimistic to pessimistic.

6. Career selection

Neal (1999) has developed a search model that considers career matching in addition 

to employment matching (fi rm matching). The purpose of this model is to fi nd reasons 

why young people change jobs or careers at an early stage, then seek jobs within a career, 

and eventually end up in a particular job.

Workers live indefi nitely and get utility from career matching 𝜃 and fi rm matching 𝜉. 

Fig.14: Wage distributions, selection probabilities, and wage
(a) Case 1 (c) Case 3(b) Case 2
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These are drawn from the distributions F(𝜃) and G(𝜉), respectively. At the beginning 

of each period, workers pick a new fi rm match 𝜉, or matching pair (𝜃, 𝜉). It should be 

noted here that workers can draw new careers only when drawing new fi rm matching. 

Therefore, a worker's choice is to remain in his/her current career and company, to 

transfer to a different company while continuing his/her previous career, or to join a new 

company under a new career. I also assume that workers do not look back because there 

is no learning or information transfer.

The worker's utility is given by ut = 𝜉t + 𝜃t , as it comes from 𝜉t and 𝜃t selected at the 

beginning of period t. Therefore, workers maximize 𝛴t(𝜉t + 𝜃t). Here, if v(𝜃, 𝜉) is the 

optimal value of the worker problem at the beginning of the period, the Bellman equation 

is as follows:

(29)

This maximization will be achieved at the beginning of the next period through 

following three action choices: (1) remain in 𝜃 and 𝜉, (2) keep career 𝜃 and extract new 

fi rm matching 𝜉, and (3) extract new career and new fi rm matching.

Carrying out a similar development to the process of deriving the reservation wage in 

the McCall model, we obtain the following:

(30)

where, H is the value when drawing careers and firms (the second argument of the 

max function in Eq.(30)), and J(𝜉) is the value of drawing new firm matching while 

maintaining x. (the third argument of the max function in Eq.(30)). Eq.(30) states that 

staying in the current state (Neal defi nes this as "stop") is chosen when its value exceeds 

the value of the other two choices.

If the equation (30) holds with equality, the cutoff value 𝜃(𝜉) is obtained as follows:
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If 𝜃 ≥ 𝜃(𝜉), then the current state should be maintained. If this is not met, people will 

choose to move to other fi rms or start new careers.

Also, the career cutoff value 𝜉 is derived by solving:

Based on this, if 𝜉 ≥ 𝜉 or 𝜃 ≥ 𝜃, workers will accept their current career.

Here is a simple simulation. First, for simplicity, assume that wage wt is defi ned as 

the sum of earnings 𝜉t and 𝜃t. I also assume that the distributions F and G follow the 

same beta binomial Bn(1, 1) distribution in order to assume a fl at situation with respect 

to careers and firms. Furthermore, the discount factor is assumed to be 𝛽 = 0.98. In 

addition, we also examine the case of 𝛽 = 0.90 to clarify how the selection results change 

depending on the discount factor. These results are depicted in Fig.15.

Fig.15 corresponds to Fig.1 of Neal (1999).  Workers in region "Change 𝜃 and 𝜉" will 

choose a new pair (𝜃, 𝜉) in the next period, and workers in region "Change 𝜉" will choose 

a pair to maintain their careers and transfer fi rms. On the other hand, workers in "Stop" 

accept their current state. Fig.15(a) assumes that the discount factor is 𝛽 = 0.98. In this 

case, workers try domain "Change 𝜃 and 𝜉" if they are unsatisfi ed with their current state, 

domain "Chnage 𝜉" if they are satisfi ed with their career but not with their company, and , 

would select the region "Stop" if they were satisfi ed with the current state. Also, Fig.12(b) 

Fig.15: Career selection and discount factors

(a) (b) 
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depicts a case where the discount factor is 𝛽 = 0.90. This means that the future is heavily 

discounted. As a result, workers are more likely to choose between "Stop" or "Change 𝜉".

Fig.16(a) shows a case where the wage distribution G(𝜉) for fi rm matching 𝜉 is given 

by Bn(n, 100, 100) (beta-binomial distribution). The distribution is nearly bell-shaped, 

meaning that the 𝜉-values are clustered around the mean. As a result, people are more 

likely to choose "Stop" because the chances of high-paying jobs appearing are low. On 

the other hand, Fig.16(b) is a case where G(𝜉) is B(0.8, 0.8). Under this distribution, 

workers perceive that their current wages are lower than they could receive in new careers 

or other fi rms. Therefore, it is more likely that the area "Change 𝜃 and 𝜉" or "Change 𝜉" 

will be selected, and the worker will clearly try to change the current situation.

7. Coclusion

   In this paper, I conducted a brief survey of dynamic programming solutions and 

simulation techniques. We also introduced the application of dynamic programming to 

the fi eld of labor economics as an important exercise. Currently, with the evolution of free 

analysis software, it has become possible to perform extremely complex calculations and 

simulations. In particular, the importance of using such analytical methods is increasing 

Fig.16: Career choice problem and career/fi rm distribution

(a) (b) 
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in the construction and simulation of macroeconomic models.

Notes

1. See Puterman (2005) for Markov processes.

2. A metric space is a set X together with a function  d : X × X →   that assigns a real number 

d(x, y) to every pair x, y ∈ X 

 satisfi ng the following properties:

・d(x, y) ≥ 0 and d(x, y) = 0   ⇔   x = y .

・d(x, y) = d(y, x) .

・d(x, y) + d(y, z) ≥ d(x, z) .

 The last property is called the triangle inequality. A metric space is said to be complete if any 

Cauchy sequence of X converges to a point in X.

3. A Banach space is a complete normed space. A normed space defi nes a distance, and a vector 

space X on  is said to be normed if there is a defi ned function || ⋅ || : X →   called the norm 

satisfi ng (1) ||x|| ≥ 0 (x ∈ X), (2) ||x|| ⇔ x = 0 , (3) ||kx|| = |k| ||x|| (x ∈ X, k ∈  ), and (4) ||x + 

y|| ≤ ||x|| + ||y|| (x, y ∈ X ). A completeness is a space in which Cauchy sequences are always 

convergent sequences. A sequence on the normed space X is a Cauchy sequence if 

 That is, for any 𝜀 > 0 there exists some N ≥ 1 such that

 Here is an example of a simple Banach space. Let C[a, b] be the vector space constituting a 

continuous function on [a, b]. If ||f|| = supa≤x≤b|f(x)| for f ∈ C[a, b] , then C[a, b] is a Banach 

space. A proof of this is given below.

 Let {fn } ⊂ C[a, b] be a Cauchy sequence. Then for any 𝜀 > 0 there exists some N ≥ 1, and 

for n, m ≥ N , I can have ||fn - fm|| ≤ 𝜀 . Therefore, 

|fn(x) - fm(x)| ≤ 𝜀,   a ≤ x ≤ b.

 If f(x) is f : [a, b] → , the sequence of functions {fn} converges to the function f at each 

point. Furthermore, in the above equation, as m → ∞, 
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|fn(x) - f(x)| ≤ 𝜀,   a ≤ x ≤ b

 can be obtained. This means that {fn} uniformly converges to f and is limn → ∞||fn - f|| → 0. 

Continuous functions uniformly converge to continuous functions, so f ∈ C[a, b] . Then C[a, 

b] is complete because the Cauchy sequence {fn} has a destination f in C[a, b].

4. Monotonicity means that if v(s) ≥ q(s) for all s ∈ S, then 𝛤(v)(s) ≥ 𝛤(q)(s) for all s ∈ S. See 

Add and Cooper (///) and Stokey, Lucas, and Prescott (1989) for details.

5. Discounting means that if we add a constant to v, the increase in T(w) will be less than this 

constant. That is, 𝛤(v + k)(s) ≤ 𝛤(v)(s) + 𝛽k for some constant k and all s ∈ S.

6. This proof is performed using the triangle inequality.

7. Judd (///) indicates the case where the interpolation does not converge.

8.  See Miao (///) for more details.

9.  The double angle formula for cos 𝜃 shows that cos 2𝜃 is a quadratic formula for cos 𝜃, and 

the triple angle formula shows that cos 3𝜃 is a cubic formula for cos 𝜃.

10. Since x = cos 𝜃, 𝜃 = cos-1x. It is obtained by substituting this into  Tj(cos 𝜃) = cos j𝜃
11. This is the same as the Fourier series expansion of the periodic function v̂j(x ) .  Chebyshev 

polynomials drop the sine function part of the Fourier series expansion and perform variable 

transformation such as x = cos 𝜃. The Chebyshev polynomial is the convergence theorem of 

the Fourier series expansion that can be applied to aperiodic functions.

12. See Judd (1998) for spline interpolation.

13. Now consider a spline interpolation for three points (x0, y0), (x1, y1), and (x2, y2). Therefore, 

the interval [x0, x1] is interpolated with polynomial S0(x), and the interval [x1, x2] is 

interpolated with polynomial S1(x). S0(x) passes through points (x0, y0) and (x1, y1) and 

S1(x) passes through points (x1, y1) and (x2, y2). Therefore, S0(x0) = y0 , S0(x1) = y1 , S1(x1) 

= y1 , and S1(x2) = y2 .

 Next, in order to connect S0(x) and S1(x) smoothly, it is necessary that the fi rst derivative and 
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the second derivative match at the connection point (x1, y1). Therefore, it is necessary that S′0 

(x1) = S′1 (x1) and S0″ (x1) = S1″ (x1). 

 Furthermore, as a condition, the second derivative at the end points is assumed to be zero, 

that is, S0″ (x0) = 0 and S1″ (x2) = 0. Since there are eight such constraints, eight unknowns 

can be solved.

14. See Judd (1998), Miranda and Fackler (2002), and Add and Cooper (2003) for more details.

15. If the integration interval is [a, b], the following conversion will result in the [-1, 1] interval.

16. A Legendre polynomial is an n-order polynomial that satisfi es certain conditions regarding (1) 

recurrence, (2) Rodriguez formula, (3) generating function, and (4) orthogonality. According 

to the conditions of the recurrence formula, P0(x) = 1 and P1(x), and (n + 1)Pn+1(x) = (2n + 1)

xPn(x) - nPn-1(x) for n ≥ 1.

17. Now consider the case where n = 2. By recurrence condition and iterative substitution of 

Legendre polynomials, we can obtain

2P2(X) = 3x2 - 1.

 The solution for P2(x) = 0 is xi = ± 1 / , and substituting this into Eq. (14) yields w1 = w2 

= 1 . So the Gaussian quadrature is

 This approximation is exact if f is less than or equal to cubic. See Judd for more details.

18. Laffont (1990), Levy (1998), and Gollier (2001) use MPS for economic analysis.

19. This can be derived using integration by parts as follows:

 Assuming F=0 and F=1, this means that
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 The left side of this equation defi nes (W).

20. The single crossing property (SCP) is essential to the concept of mean preservation. The 

cumulative distribution function G( ⋅ ) has a single crossing with F( ⋅ ) if, for some value x, 

G(x) ≥ F(x) when x > x and G(x) ≤ F(x) when x > x . See Diamond and Stiglitz (1974) and 

Machina and Pratt (1997) for the relationship between SCP and MPS.

21. Since this model assumes no recalls and there is no concept of turnover, workers who accept 

the offer get the present value of the wage stream shown below.

22. The first equation of equation (20) is decomposed into the interval (0, w) and (w, B) as 

follows:

 Here, c is used as it is because of the following.

 Summarizing the above equation by integration, we get 

 which is expressed as follows.

 Equation (21) can be obtained by adding the following to this:

23. Add and subtract the following from the right side of equation (21).
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 As a result, Equation (21) can be rewritten as follows:

 Expanding the fi rst term on the right side of this equation yields 𝛽( w - w) / (1 - 𝛽) , so this 

equation can be rewritten as follows:

 On the other hand, if we apply integration by parts to the second term, 

 and I have

 Therefore, 

 and the expression (21) is obtained by expanding this.

24. Expand as in footnote 22. First, the formula for determining the reservation wage is as 

follows.

 Expanding out again in the same way as in footnote 22, I have:

 Summarizing in the interval of integration, we obtain the following:
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 Furthermore, the second term on the left side of the following equation is added to both sides.

 It is clear that the left-hand side of this equation is w. By expanding the second term on the 

right side, we can fi nally obtain Equation (26).
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